Selection of infusion therapy regimen in the postoperative period in children with congenital heart defects

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The choice of infusion therapy regimen in neonates and infants after cardiac surgery remains a relevant challenge. The use of balanced crystalloid solutions in combination with an optimized infusion regimen may improve metabolic and hemodynamic parameters as well as myocardial contractility.

AIM: This work aimed to evaluate the effectiveness of an optimized restrictive infusion regimen with balanced crystalloid solutions in neonates and infants during the early postoperative period after cardiac surgery for congenital heart defects.

METHODS: This prospective cohort study included 61 children with transposition of the great arteries and total anomalous pulmonary venous return, who underwent radical cardiac surgery. Patients were allocated into groups according to the type of solution and infusion protocol used: the control group received 0.9% sodium chloride solution using a standard regimen, whereas the main group received Ringer’s balanced solution according to the optimized method (1 ml/[kg × h] + 1 ml/[kg × h] for inotropic support).

RESULTS: Patients treated with the balanced solution under the optimized regimen demonstrated more pronounced improvements in pH and base deficit, stable potassium, sodium, and chloride levels, less pronounced tachycardia, and normalization of central venous pressure. Echocardiographic parameters at 24 hours indicated improved end-diastolic volume, end-diastolic index, and ejection fraction. Extubation time was reduced by 20.2%, and length of stay in intensive care units was reduced by 14.3%.

CONCLUSION: The combination of balanced crystalloids with a restrictive infusion regimen in neonates and infants after correction of congenital heart defects promotes a more physiological restoration of homeostasis, reduces the need for inotropic support, and improves cardiohemodynamic parameters in the early postoperative period.

Full Text

Restricted Access

About the authors

Akhrorbek A. Alimov

National Children’s Medical Center; Tashkent State Medical University

Author for correspondence.
Email: ahroralimov88@gmail.com
ORCID iD: 0000-0001-6430-3295
SPIN-code: 2749-6584
Узбекистан, Tashkent; Tashkent

Alisher M. Sharipov

Tashkent State Medical University

Email: d911wa@gmail.com
ORCID iD: 0009-0002-9014-6793

MD, Dr. Sci. (Medicine), Professor

Узбекистан, Tashkent

Anvar V. Alimov

Tashkent State Medical University

Email: endo.AnvarValiev@gmail.com
ORCID iD: 0000-0001-6692-3375

MD, Dr. Sci. (Medicine), Professor

Узбекистан, Tashkent

Yurii S. Aleksandrovich

Saint Petersburg State Pediatric Medical University

Email: jalex1963@mail.ru
ORCID iD: 0000-0002-2131-4813
SPIN-code: 2225-1630

MD, Dr. Sci. (Medicine), Professor

Россия, Saint Petersburg

Shoakmal Sh. Shorakhmedov

Tashkent State Medical University

Email: sshoraxmedovs@gmail.com
ORCID iD: 0000-0002-4695-610X
SPIN-code: 4301-0377
Узбекистан, Tashkent

References

  1. Bouma BJ, Mulder BJM. Changing landscape of congenital heart disease. Circ Res. 2017;120(6):908–922. doi: 10.1161/CIRCRESAHA.116.309302
  2. Murthy RA. Management of congenital heart disease. J Thorac Dis. 2020;12(3):1159–1160. doi: 10.21037/jtd.2019.11.16
  3. Lazarev VV, Sulaimanova ZhD, Tsypin LE, et al. Choice of drug for intravenous fluid therapy in the early postoperative period in children. General Reanimatology. 2020;16(5):30–36. doi: 10.15360/1813-9779-2020-5-30-36 EDN: YJYRFF
  4. Lazarev VV, Sulaimanova ZhD, Tsypin LE, et al. Primary infusion therapy in early postoperative period in children: 0.9% saline solution or balanced polyionic solution. Russian Journal of Anaesthesiology and Reanimatology. 2020;(3):52–58. doi: 10.17116/anaesthesiology202003152 EDN: XIRKQP
  5. Lazarev VV, Sulaimanova ZhD. Crystalloid agents used in perioperative infusion therapy in children. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2019;9(4):99–107. doi: 10.30946/2219-4061-2019-9-4-99-107 EDN: NHMTIL
  6. Aleksandrovich YuS, Vorontsova NYu, Grebennikov VА, et al. Recommendations on infusion-transfusion therapy in children undergoing surgery. Messenger of anesthesiology and resuscitation. 2018;15(2):68–84. doi: 10.21292/2078-5658-2018-15-2-68-84 EDN: XMOGBF
  7. Bailly DK, Alten JA, Gist KM, et al. Fluid accumulation after neonatal congenital cardiac operation: clinical implications and outcomes. Ann Thorac Surg. 2022;113(6):1648–1657. doi: 10.1016/j.athoracsur.2021.12.078
  8. Hanot J, Dingankar AR, Sivarajan VB, et al. Fluid management practices after surgery for congenital heart disease: a worldwide survey. Pediatr Crit Care Med. 2019;20(4):357–364. doi: 10.1097/PCC.0000000000001818
  9. Semler MW, Self WH, Wanderer JP, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–839. doi: 10.1056/NEJMoa1711584
  10. Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–1710. doi: 10.1001/jama.2015.12334
  11. Fuchs J, Adams ST, Byerley J. Current issues in intravenous fluid use in hospitalized children. Rev Recent Clin Trials. 2017;12(4):284–289. doi: 10.2174/1574887112666170913120724
  12. Malbrain MLNG, Langer T, Annane D, et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020;10:64. doi: 10.1186/s13613-020-00679-3
  13. Lex DJ, Tóth R, Czobor NR, et al. Fluid overload is associated with higher mortality and morbidity in pediatric patients undergoing cardiac surgery. Pediatr Crit Care Med. 2016;17(4):307–314. doi: 10.1097/PCC.0000000000000659
  14. Brossier DW, Tume LN, Briant AR, et al. ESPNIC clinical practice guidelines: intravenous maintenance fluid therapy in acute and critically ill children — a systematic review and meta-analysis. Intensive Care Med. 2022;48(12):1691–1708. doi: 10.1007/s00134-022-06882-z
  15. Qian M, Zhao J, Zhang K, et al. High intraoperative fluid load associated with prolonged length of hospital stay and complications after non-cardiac surgery in neonates. Eur J Pediatr. 2024;183(9):3739–3748. doi: 10.1007/s00431-024-05628-x
  16. Castañuela-Sánchez V, Hernández-Suárez A, García-Benítez L, et al. Fluid overload as a predictor of morbidity and mortality in pediatric patients following congenital heart surgery. Arch Cardiol Mex. 2022;92(2):139–147. doi: 10.24875/ACM.21000235
  17. Bailly DK, Alten JA, Gist KM, et al. Fluid accumulation after neonatal congenital cardiac operation: clinical implications and outcomes. Ann Thorac Surg. 2022;114(6):2288–2294. doi: 10.1016/j.athoracsur.2021.12.078
  18. Arunamata A, Axelrod DM, Kipps AK, et al. Practice patterns in postoperative echocardiographic surveillance after congenital heart surgery in children: a single center experience. J Pediatr. 2017;180:87–91.e1. doi: 10.1016/j.jpeds.2016.09.061
  19. MacKay EJ, Zhang B, Shah RM, et al. Predictors of intraoperative echocardiography: analysis of The Society of Thoracic Surgeons database. Ann Thorac Surg. 2023;115(5):1289–1295. doi: 10.1016/j.athoracsur.2023.01.005
  20. Kumaresan A. If intraoperative transesophageal echocardiography impacts outcomes, why is use so variable? Ann Thorac Surg. 2023;115(5):1295–1296. doi: 10.1016/j.athoracsur.2023.02.005
  21. Soni R, Soni N, Chakkarapani A, et al. The utility of serial echocardiography parameters in management of newborns with congenital diaphragmatic hernia and predictors of mortality. Pediatr Cardiol. 2023;44(2):354–366. doi: 10.1007/s00246-022-03002-y
  22. Singh Y, Tissot C, Fraga MV, et al. Echocardiographic evaluation of hemodynamics in neonates and children. Front Pediatr. 2017;5:201. doi: 10.3389/fped.2017.00201
  23. Cheung Y-F. Fluid management. In: Cheung Y-F, editor. Congenital and paediatric acquired heart disease in practice. Singapore: Springer; 2023. P. 463–464. doi: 10.1007/978-981-99-2862-0_51

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of medians and ranges of ejection fraction between groups 1 and 2 after surgery (a) and at 24 hours (b).

Download (96KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 81892 от 24.09.2021 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies