Halothane anesthesia in children: is it still relevant?

Cover Page

Abstract


Purpose. To estimate the significance and perspectivity of further using a halothane as an anesthetic in children. Material and methods. PubMed, Scopus, TheCochraneLibrary, CyberLeninka and own observations were used during the analysis. Results. Almost all developed and some developing countries stopped using halothane in clinical anesthesia. However, it is still used in the majority of developing countries appealing to its low cost. On the one hand, objective data on continuous use of the preparation are available along with recommendations ‘not to exclude it from the clinical practice’. On the other hand, many countries hold objective data that recommend to refrain from the use of the preparation at the country level and reasoned statements on uselessness of its subsequent application. Halothane pharmacology, and the cardiodepressive effect and hepatic toxic effect, in particular, is currently an established fact which is well known to practitioners. Pharmacological properties of halothane are far below those of halogenated third generation inhalation anesthetics. Thus, it is reasonable to exclude it from anesthesia practice completely. Conclusion. In spite of low halothane cost as compared to halogenated third generation inhalation anesthetics, the former needs to be limited or completely excluded due to a significant number of negative signs resulting in severe damage of the liver and heart, influencing the immune system, promoting metastasis in oncology, disturbing pulmonary epithelial structure, etc.

About the authors

V. V. Lazarev

Pirogov Russian National Research Medical University

Author for correspondence.
Email: 1dca@mail.ru

Russian Federation

Vladimir V. LAZAREV – dr. Sci. (Med.), Professor, Head of the Department of Pediatric Anesthesiology and Intensive Care

Ostrovityanova st., 1, Moscow, 1117997
phone:+7(495)936–90–65 

References

  1. Цыпин Л. Е., Лазарев В. В., Линькова Т. В., Прокопьев Г. Г., Кочкин В. С., Щукин В. В., Игнатущенко С. Ф. Севоран (севофлурана) – приоритет в ингаляционной анестезии у детей. Журн. Детская больница. 2005;3(21):25–29
  2. Лазарев В. В., Кочкин В. С., Цыпин Л. Е., Попова Т. Г. Технология анестезии севофлураном при магнитнорезонансной томографии у детей. Журн. Эффективная фармакотерапия. 2014;6:34–36
  3. Петрова Л. Л., Прокопьев Г. Г., Цыпин Л. Е., Лазарев В. В., Фирсова А. Ю. Ингаляционная анестезия у детей в хирургическом стационаре одного дня: анализ жизненно важных функций. Журн. Детская больница. 2015;1(59):3–10
  4. Gardiner S., Burmaa S., Burrow J., Rudkin G. Geography impacts on anaesthesia outcomes. Anaesthesia and Intensive Care. 2011 Jan;39(1):134–5. PMID: 21375107
  5. Habibollahi P., Mahboobi N., Esmaeili S., Safari S., Dabbagh A., Alavian S. M. Halothane-induced hepatitis: A forgotten issue in developing countries: Halothane-induced hepatitis. Hepat Mon. 2011 Jan.;11(1):3–6. PMID: 22087107.
  6. Guo J., Jin X., Wang H., Yu J., Zhou X., Cheng Y., Tao Q., Liu L., Zhang J. Emergence and Recovery Characteristics of Five Common Anesthetics in Pediatric Anesthesia: a Network Meta-analysis. MolNeurobiol. 2017 Aug.;54(6):4353–64. doi: 10.1007/s12035–016–9982–3
  7. Mahboobi N., Esmaeili S., Safari S., Habibollahi P., Dabbagh A., Alavian S. M. Halothane: how should it be used in a developing country? East Mediterr Health J. 2012 Feb.;18(2):159–64. PMID: 22571093
  8. Morray J. P., Geiduschek J. M., Ramamoorthy C., Haberkern C. M., Hackel A., Caplan R. A., Domino K. B., Posner K., Cheney F. W. Anesthesia-related cardiac arrest in children: Initial findings of the Pediatric Perioperative Cardiac Arrest (POCA) Registry. Anesthesiology. 2000;93:6–14. PMID: 10861140
  9. Charles J. Coté. Anesthesia-related Cardiac Arrest in Children. Anesthesiology. 2001;94:933–4. PMID: 1138855
  10. Dabbagh A., Rajaei S. Halothane: Is there still any place for using the gas as an anesthetic? Hepat Mon. 2011;11(7):511–2. PMID: 22087187
  11. Newland M. C., Ellis S. J., Lydiatt C. A., Peters K. R., Tinker J. H., Romberger D. J., Ullrich F. A., Anderson J. R. Anestheticrelated cardiac arrest and its mortality: a report covering 72,959 anesthetics over 10 years from a US teaching hospital. Anesthesiology. 2002 Jul.;97(1):108–15. PMID: 12131111
  12. Morray J. P., Geiduschek J. M., Ramamoorthy C., Haberkern C. M., Hackel A., Caplan R. A., Domino K. B., Posner K., Cheney F. W. Anesthesia-related cardiac arrest in children: initial findings of the Pediatric Perioperative Cardiac Arrest (POCA) Registry. Anesthesiology. 2000 Jul.;93(1):6–14. PMID: 10861140
  13. Bhananker S. M., Ramamoorthy C., Geiduschek J. M., Posner K. L., Domino K. B., Haberkern C. M., Campos J. S., Morray J. P. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. AnesthAnalg. 2007 Aug.;105(2):344–50. doi: 10.1213/01.ane.0000268712.00756.dd, PMID: 17646488
  14. Soleimanpour H., Safari S., Rahmani F., Ameli H., Alavian S. M. The role of inhalational anesthetic drugs in patients with hepatic dysfunction: a review article. Anesth. Pain. Med. 2015 Jan.;5(1):e23409. doi: 10.5812/aapm.23409
  15. Safari S., Motavaf M., SeyedSiamdoust S.A., Alavian S. M. Hepatotoxicity of halogenated inhalational anesthetics. Iran Red Crescent Med. J. 2014 Sep.;16(9):e20153. doi: 10.5812/ircmj.20153
  16. Lerman J. Inhalational anesthetics. Paediatr. Anaesth. 2004 May;14(5):380–3. doi: 10.1111/j.14609592.2004.01334.x, PMID: 15086847
  17. Kharasch E. D., Hankins D. C., Fenstamaker K., Cox K. Human halothane metabolism, lipid peroxidation, and cytochromes P(450)2A6 and P(450)3A4. Eur. J. Clin. Pharmacol. 2000 Feb-Mar;55(11–12):853–9. PMID: 10805064
  18. Topouzova-Hristova T., Daza P., Garcia-Herdugo G., Stephanova E. Volatileanaesthetichalothane causes DNA damage in A549 lung cells. Toxicol In Vitro. 2006 Aug.;20(5):585–93. doi: 10.1016/j.tiv.2005.10.004, PMID: 16314068
  19. Topouzová-Hristova T., Hazarosova R., Bandreva B., Stephanova E. Halothane does not directly interact with genome DNA of A549 cells. Folia Biol. (Praha). 2007;53(5):176–82. PMID: 17976308
  20. Stephanova E., Topouzova-Hristova T., Konakchieva R. Mitochondria are involved in stress response of A549 alveolar cells to halothane toxicity. Toxicol In Vitro. 2008 Apr.;22(3):688–94. doi: 10.1016/j.tiv.2007.12.012
  21. Stephanova E., Topouzova-Hristova T., Hazarosova R., Moskova V. Halothane-induced alterations in cellular structure and proliferation of A549 cells. Tissue Cell. 2008 Dec.;40(6):397–404. doi: 10.1016/j.tice.2008.04.001
  22. Borges M. C., Marchica C. L., Narayanan V., Ludwig M. S. Allergen challenge during halothane compared to isoflurane anesthesia induces a more potent peripheral lung response. Respir. Physiol. Neurobiol. 2013 Oct.;189(1):144–52. doi: 10.1016/j.resp.2013.07.005
  23. O’Callaghan C., Sikand K. The effect of halothane and pentobarbital sodium on brain ependymal cilia. Cilia. 2012 Jul. 6;1(1):12. doi: 10.1186/2046–2530–1–12
  24. Qin J. H., Zhang X. R., He L., Zhu J., Ma Q. J. Effect of sevoflurane and halothane anesthesia on cognitive function and immune function in young rats. Saudi. J. Biol. Sci. 2018 Jan.;25(1):47–51. doi: 10.1016/j.sjbs.2016.08.002
  25. Soleimanpour H., Safari S., Rahmani F., Ameli H., Alavian S. M. The role of inhalational anesthetic drugs in patients with hepatic dysfunction: a review article. Anesth. Pain. Med. 2015 Jan. 7;5(1):e23409. doi: 10.5812/aapm.23409
  26. Chakraborty M., Fullerton A. M., Semple K., Chea L. S., Proctor W. R., Bourdi M., Kleiner D. E., Zeng X., Ryan P. M., Dagur P. K., Berkson J. D., Reilly T. P., Pohl L. R. Drug-induced allergic hepatitis develops in mice when myeloid-derived suppressor cells are depleted prior to halothane treatment. Hepatology. 2015 Aug.;62(2):546–57. doi: 10.1002/hep.27764
  27. Cheng L., You Q., Yin H., Holt M. P., Ju C. Involvement of natural killer T cells in halothane-induced liver injury in mice. Biochem Pharmacol. 2010 Jul. 15;80(2):255–61. doi: 10.1016/j.bcp.2010.03.025
  28. Stollings L. M., Jia L. J., Tang P., Dou H., Lu B., Xu Y. Immune Modulation by Volatile Anesthetics. Anesthesiology. 2016 Aug.;125(2):399–411. doi: 10.1097/ALN.0000000000001195
  29. Katzav S., Shapiro J., Segal S., Feldman M. General anesthesia during excision of a mouse tumor accelerates postsurgical growth of metastases by suppression of natural killer cell activity. Isr. J. Med. Sci. 1986 May; 22(5):339–45. PMID: 3744781
  30. Jiao B., Yang C., Huang N. N., Yang N., Wei J., Xu H. Relationship between Volatile Anesthetics and Tumor Progression: Unveiling the Mystery. Curr. Med. Sci. 2018 Dec.;38(6):962–7. doi: 10.1007/s11596–018–1970–6
  31. Melamed R., Bar-Yosef S., Shakhar G., Shakhar K., Ben Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth. Analg. 2003;97(5):1331–9. PMID: 14570648
  32. Hanley P. J., Ray J., Brandt U., Daut J. Halothane, isoflurane and sevoflurane inhibit NADH: ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J. Physiol. 2002 Nov. 1;544(Pt 3): 687–93. doi: 10.1113/jphysiol.2002.025015, PMID: 12411515

Statistics

Views

Abstract - 72

PDF (Russian) - 0

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies