SHORT BOWEL SYNDROM IN CHILDREN: ETIOLOGY, EPIDEMIOLOGY, THERAPY

Cover Page


Cite item

Abstract

Short bowel syndrome (SBS) is a consequence of massive intestinal resection and can be of a hostile type. The main clinical manifestation of SBS is pronounced malabsorption. SBS is mainly developed due to surgical conditions of newborns demanding intestinal resection with the most frequent reason being necrotizing enterocolitis. This disease is predominantly met in premature children with low and extremely low body mass. Intestinal adaptation aimed at increase of intestinal absorption is developed in patients in response to SBS. In spite of that, the patients had to obtain parenteral feeding. SBS treatment is aimed at achievement of complete adequate enteral nutrition of patients. However, survival of patients with SBS is low, it varies greatly and depends on many factors. Currently, new methods of SPS therapy are developed and many studies show promising results. SBS remains a complex disorder requiring individual complex treatment of every patient.

About the authors

Rasul Khasanov

Heidelberg University; Bashkir State Medical University

Author for correspondence.
Email: khasanovrasul@gmail.com
Russian Federation

Cornelia Hagl

Heidelberg University

Email: noemail@neicon.ru
Russian Federation

Lucas M. Wessel

Heidelberg University

Email: noemail@neicon.ru
Russian Federation

References

  1. Sulkowski J.P., Minneci P.C. Management of short bowel syndrome // Pathophysiology. 2014. Vol. 21. Р. 111-118.
  2. Rege A.S., Sudan D.L. Autologous Gastrointestinal Reconstruction: Review of the Optimal Nontransplant Surgical Options for Adults and Children With Short Bowel Syndrome // Nutrition in clinical practice. 2012.
  3. Goulet O., Sauvat F. Short bowel syndrome and intestinal transplantation in children // Сurr. Opin. din. Nutr. Metabolic Сare. 2006. Vol. 9. P. 304-313.
  4. van der Werf C.S., Sribudiani Y., Verheij J.B. et al. Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations // Genetics In Medicine. 2012.
  5. Weih S., Kessler M., Fonouni H. et al. Current practice and future perspectives in the treatment of short bowel syndrome in children-a systematic review. Langenbeck’s archives of surgery // Deutsche Gesellschaft fur Chirurgie. 2012. Bd. 397. S. 1043-1051.
  6. Nucci A., Burns R.C., Armah T. et al. Interdisciplinary management of pediatric intestinal failure: A 10-year review of rehabilitation and transplantation // J. Gastroint. Surgery. 2008. Vol. 12. Р. 429-435.
  7. Olieman J.F., Penning C., Poley M.J. et al. Impact of infantile short bowel syndrome on long-term health-related quality of life: a cross-sectional study // J. Pediatr. Surgery. 2012. Vol. 47. Р 1309-1316.
  8. Duro D., Kamin D., Duggan C. Overview of pediatric short bowel syndrome // J. Pediatr. Gastroent. Nutrition. 2008. Vol. 47, Suppl. 1. S33-36
  9. Wales P.W., Christison-Lagay E.R. Short bowel syndrome: epidemiology and etiology // Seminars in pediatric surgery. 2010. Vol. 19. Р. 3-9.
  10. Modi B.P., Langer M., Ching Y.A. et al. Improved survival in a multidisciplinary short bowel syndrome program // J. Pediatr. Surgery. 2008. Vol. 43. Р. 20-24.
  11. Spencer A.U., Neaga A., West B. et al. Pediatric short bowel syndrome: redefining predictors of success // Ann. Surgery. 2005. Vol. 242. Р. 403-409.
  12. Cole C.R., Hansen N.I., Higgins R.D. et al. Very low birth weight preterm infants with surgical short bowel syndrome: incidence, morbidity and mortality, and growth outcomes at 18 to 22 months // Pediatrics. 2008. Vol. 122. e573-582.
  13. Koffeman G.I., van Gemert W.G., George E.K. et al. Classification, epidemiology and aetiology. Best practice & research // Clin. Gastroent. 2003. Vol. 17. Р. 879-893.
  14. Wales P.W., de Silva N., Kim J. et al. Neonatal short bowel syndrome: Population-based estimates of incidence and mortality rates // J. Pediatr. Surgery. 2004. Vol. 39. Р. 690-695.
  15. Salvia G., Guarino A., Terrin G. et al. Neonatal Onset Intestinal Failure: An Italian Multicenter Study // J. Pediatrics. 2008. Vol. 153. Р. 674-676.
  16. O’Brien D.P., Nelson L.A., Huang F.S. et al. Intestinal adaptation: structure, function, and regulation // Seminars in pediatric surgery. 2001. Vol. 10. Р. 56-64.
  17. Tappenden K.A. Intestinal Adaptation Following Resection // JPEN. 2014.
  18. Barksdale E.M., Stanford A. The surgical management of short bowel syndrome // Cur. Gastroent. Reports. 2002. Vol. 4. Р. 229-237.
  19. Shiomi M., Wakabayashi Y., Sano T. et al. Nitric oxide suppression reversibly attenuates mitochondrial dysfunction and cholestasis in endotoxemic rat liver // Hepatology. 1998. Vol. 27. Р. 108-115.
  20. Reinshagen K., Adams R., Trunk M. et al. The chronic liver disease in patients with short bowel syndrome: etiology and treatment // Minerva pediatrica. 2009. Vol. 61. Р. 273-281.
  21. Fishbein T.M. Intestinal transplantation // New Engl.J. Med. 2009. Vol. 361. Р. 998-1008.
  22. O’Keefe S.J., Burnes J.U., Thompson R.L. Recurrent sepsis in home parenteral nutrition patients: an analysis of risk factors // JPEN. 1994. Vol. 18. Р. 256-263.
  23. King B., Carlson G., Khalil B.A. et al. Intestinal bowel lengthening in children with short bowel syndrome: systematic review of the Bianchi and STEP procedures // World J. Surgery. 2013. Vol. 37. Р. 694-704.
  24. Goulet O., Baglin-Gobet S., Talbotec C. et al. Outcome and long-term growth after extensive small bowel resection in the neonatal period: a survey of 87 children // Eur.J. Pediatr. Surgery. 2005. Vol. 15. S. 95-101.
  25. Goulet O., Ruemmele F., Lacaille F. et al. Irreversible intestinal failure // J. Pediatr. Gastroent. Nutrition. 2004. Vol. 38. Р. 250-269.
  26. Shekherdimian S., Scott A., Chan A. et al. Intestinal lengthening in rats after massive small intestinal resection // Surgery. 2009. Vol. 146. Р. 291-295.
  27. Stark R., Zupekan T., Bondada S. et al. Restoration of mechanically lengthened jejunum into intestinal continuity in rats // J. Pediatr. Surgery. 2011. Vol. 46. Р. 2321-2326.
  28. Koga H., Sun X., Yang H. et al. Distraction-induced intestinal enterogenesis: preservation of intestinal function and lengthening after reimplantation into normal jejunum // Ann. Surgery. 2012. Vol. 255. Р. 302-310.
  29. Jabaji Z., Stark R., Dunn J.C. Regeneration of enteric ganglia in mechanically lengthened jejunum after restoration into intestinal continuity // J. Pediatr. Surgery. 2013. Vol. 48. Р. 118-123.
  30. Stark R., Panduranga M., Carman G. et al. Development of an endoluminal intestinal lengthening capsule // J. Pediatr. Surgery. 2012. Vol. 47. Р. 136-141.
  31. Sullins V.F., Wagner J.P., Suwarnasarn A.T. et al. A novel biodegradable device for intestinal lengthening // J. Pediatr. Surgery. 2014. Vol. 49. Р. 109-113.
  32. Yin J., Chen J.D. Mechanisms and potential applications of intestinal electrical stimulation // Dig.Dis. Sciences. 2010. Vol. 55. Р. 1208-1220.
  33. McMellen M.E., Wakeman D., Longshore S.W. et al. Growth factors: possible roles for clinical management of the short bowel syndrome // Seminars in pediatric surgery. 2010. Vol. 19. Р. 35-43.
  34. Vegge A., Thymann T., Lund P. et al. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates // Gastroint. Liv. Physiol. 2013. Vol. 305. G277-285.
  35. Sueyoshi R., Ralls M.W., Teitelbaum D.H. Glucagon-like peptide 2 increases efficacy of distraction enterogenesis // J. Surg. Res. 2013. Vol. 184. Р. 365-373.
  36. O’Keefe S.J., Jeppesen P.B., Gilroy R. et al. Safety and efficacy of teduglutide after 52 weeks of treatment in patients with short bowel intestinal failure // Clin. Gastroent. Hepatology. 2013. Vol. 11. Р. 815-823.
  37. Jeppesen P.B., Pertkiewicz M., Messing B. et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure // Gastroent. 2012. Vol. 143. Р. 1473-1481.
  38. Jeppesen P.B., Gilroy R., Pertkiewicz M. et al. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome // Gut. 2011. Vol. 60. Р. 902-914.
  39. Wilhelm S.M., Lipari M., Kulik J.K. et al. Teduglutide // Ann. Pharmacother. 2014.
  40. Tee C.T., Wallis K., Gabe S.M. Emerging treatment options for short bowel syndrome: potential role of teduglutide // Clin.Exp. Gastroent. 2011. Vol. 4. Р. 189-196.
  41. Grikscheit T.C. Tissue engineering of the gastrointestinal tract for surgical replacement: a nutrition tool of the future? // Proc. Nutr. Society. 2003. Vol. 62. Р. 739-743.
  42. Pahari M.P., Raman A., Bloomenthal A. et al. A novel approach for intestinal elongation using acellular dermal matrix: an experimental study in rats // Transpl. Proc. 2006. Vol. 38. Р. 1849-1850.
  43. Wang Z.Q., Watanabe Y., Toki A. Experimental assessment of small intestinal submucosa as a small bowel graft in a rat model // J. Pediatr. Surgery. 2003. Vol. 38. Р. 1596-1601.
  44. Nakase Y., Nakamura T., Kin S. et al. Endocrine cell and nerve regeneration in autologous in situ tissue-engineered small intestine // J. Surg. Res. 2007. Vol. 137. Р. 61-68.
  45. Collins M.N., Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering: a review // Carbohydrate polymers. 2013. Vol. 92. Р. 1262-1279.
  46. Grikscheit T.C., Siddique A., Ochoa E.R. et al. Tissue-engineered small intestine improves recovery after massive small bowel resection // Ann. Surg. 2004. Vol. 240. Р. 748-754.
  47. Markel T.A., Crisostomo P.R., Lahm T. et al. Stem cells as a potential future treatment of pediatric intestinal disorders // J. Pediatr. Surgery. 2008. Vol. 43. Р. 1953-1963.
  48. Dunn J.C. Is the tissue-engineered intestine clinically viable? // Nat. din. Pract. Gastroent. Hepatology. 2008. Vol. 5. Р. 366-367.

Copyright (c) 2014 Khasanov R., Hagl C., Wessel L.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies